

Mechanics and molecular physics. Electrostatics. Electromagnetism

Working program of basic discipline (Silabus)

Poquisitos for basis dissiplin

Requisites for basic discipline					
First (bachelor's)					
10 Natural sciences					
163 Biomedical Engineering					
Biomedical Informatics					
Normative					
full-time					
1 course, spring semester					
270 hours / 9 credits ECTS					
Exam/ Test Work, Modular Test Work					
According to the schedule on the site http://rozklad.kpi.ua/					
English					
Lecturer: Ph.D., Khist V.V., khist2012@gmail.com					
Practical: Ph.D., Khist V.V.					
Platform «Sikorsky»					

Curriculum of the discipline

1. 1. Description of the discipline, its purpose, subject of study and learning outcomes

The purpose of the discipline is to form students' competencies, skills and knowledge in the field of physics in relation to the fundamental concepts, laws and theories of classical and modern physics, which provides them with effective mastery of special disciplines and further use of new physical principles in information technology and computer sciences.

The subject of the discipline - laws, methods and means of mechanics, electricity and magnetism, optics, physics of quantum phenomena, as well as atomic physics as components of the process of physical research.

According to the requirements of the educational-professional program, students after mastering the discipline must demonstrate the following results:

CAPABILITIES

General competencies (OPP was put into effect by the Rector's Order NON/ 89/2021 of 19.04.2021):

- GC 1 Ability to abstract thinking, analysis and synthesis.
- **GC 2** Ability to search, process and analyze information from various sources.
- GC 3 Ability to identify, formulate and solve problems.
- GC 5 Ability to work in an international context.

Special (professional) competencies (OPP was put into effect by the Rector's Order NON/ 89/2021 of 19.04.2021):

PC 1 - Ability to solve complex problems of biomedical engineering using the methods of mathematics, natural and engineering sciences.

PC 2 - Ability to develop a working hypothesis, plan and set experiments to test the hypothesis and achieve the engineering goal using appropriate technologies, technical means and tools.

PC 9 - Ability to create tools and methodologies of scientific activity, evaluation and implementation of the results of modern developments, solutions and achievements of engineering and exact sciences in medicine and biology.

The program learning outcomes after studying the discipline "<u>Mechanics and molecular physics.</u> <u>Electrostatics. Electromagnetism</u>" are (OPP was put into effect by the Rector's Order NON/ 89/2021 of 19.04.2021):

PLO 1 - Know, understand and be able to apply at the basic level the basic principles of general and theoretical physics, in particular, classical, relativistic and quantum mechanics, molecular physics and thermodynamics, electromagnetism, wave and quantum optics, atomic physics and atomic nucleus to establish, analyze, interpretation, explanation and classification of the essence and mechanisms of various physical phenomena and processes for solving complex specialized problems and practical problems in physics and / or astronomy.

PLO 7 - Know the basic skills of theoretical and / or experimental research in certain special sections of physics or astronomy, performed individually (autonomously) and / or as part of a scientific group.

PLO 9 - Be able to apply basic mathematical knowledge used in physics and astronomy: analytical geometry, linear algebra, mathematical analysis, differential and integral equations, probability theory and mathematical statistics, group theory, methods of mathematical physics, theory of functions of complex variables, mathematical modeling.

PLO 10 - Be able to plan research, choose the best methods and means to achieve the goal of research, find ways to solve scientific problems and improve applied methods.

PLO 11 - Be able to organize, interpret and summarize the obtained scientific and practical results, draw conclusions.

PLO 16 - Be able to study independently and improve their skills.

PLO 25 - Be able to conduct theoretical or experimental research performed individually or as part of a research group.

2. Prerequisites and postrequisites of the discipline (place in the structural and logical scheme of education according to the relevant educational program)

The value of the discipline in the training of specialists:

The course of general physics, together with the courses of higher mathematics and computer science, plays the role of a fundamental physical and mathematical base, without which the successful activity of a specialist in any field of technology is impossible. This program reflects the current state of teaching physics in higher technical educational institutions. It involves a natural combination of macroscopic and microscopic approaches and the disclosure of internal logical connections between different branches of physical science.

In the structural and logical scheme of the specialist-training program, the following disciplines and credit modules provide the credit module:

Name of credit module (discipline)	Topics from RNP (names and numbers) Providing a credit module	•
1 / I Mathematical analysis	Differential calculus of functions of one and several variables	MPN 2.01.01
	Integral calculus of a function of one variable	MPN 2.01.02
	Multiple integrals	MPN 2.01.05
	Theory of function of a complex variable	MPN 2.01.07

The credit module in the structural and logical scheme of the training program provides the following disciplines and credit modules:

	Name of credit module (discipline)
Theory of biomedical signals	
Theory of automatic control	

3. The content of the discipline

The main sections and topics that will be considered in the process of studying the course:

Section 1. "Mechanics and molecular physics. Electrostatics. Electromagnetism"

Partition 1. Physical basis of mechanics

Topic 1.1. Introduction. Kinematics.

Basic concepts, magnitudes and equations of kinematics of the material point. Rotational motion of a solid body. Flat motion of a solid body.

Topic 1.2. The dynamics of the translational motion.

Newton's laws. Basic equation of motion of a material point. Movement in non-inertial reference systems.

Topic 1.3. Momentum.

The position and movement of the center of the masses of the system. The law of conservation of momentum.

Topic 1.4. Work and energy.

Work and power of force. Kinetic and potential energy. The connection between mechanical energy and the work of forces. The law of conservation of mechanical energy. Simultaneous energy and momentum conservation.

Topic 1.5. Dynamics of rotational motion of a solid.

Moment of momentum and moment of inertia. The equation of the dynamics of the rotational motion of a solid. Saving the momentum to the axis. Calculation of moments of inertia of solids

Topic 1.6. Mechanical oscillations.

Equation of mechanical oscillations.

Topic 1.7. Elements of the special theory of relativity

The transformation of Lorentz and the consequences of them. Relativistic law of speed transformation. Limit of the velocity C. Relativistic momentum. Equation of relativistic particle movement.

Section 1. Electricity and Magnetism.

Topic 2.1. Electrostatic field in vacuum.

Electric field tension. Electrostatic potential of the electric field. The electrostatic theorem of Gauss. Electric dipole.

Topic 2.2. Electrostatic field in matter.

Electric field in dielectrics and conductors. Electrical capacity. Energy of the electric field. Topic 2.3. Direct current laws.

Size and current density, current line. The laws of Oma and Joule-Lentz in the local (differential) form. External forces, voltage drop and electromotive force (EMF). Ohm's law for any stake. Topic 2.4. Magnetic field.

Magnetic interaction, vector of magnetic induction. Magnetic field of conductor with current, the law of Bio-Savar. Magnetic fields of the simplest systems. The effect of the magnetic field on the current, Ampere law. Circuit with current in external magnetic field. Basic equations of magnetostatics in a vacuum: the Gauss integral theorem and the theorem on the circulation of the magnetic field of strings. The nature of the magnetism of matter. Magnetization and magnetization. Magnetization of an isotropic magnet, magnetic susceptibility and permeability. Magnetic field tension vector. Theorem on the circulation of a magnetic field in a substance.

Topic 2.5. Electromagnetic induction.

The phenomenon of electromagnetic induction. Rule of Lenz. Faraday's Law. Conductor inductance, selfinduction. Magnetic energy. Vortical electric field. Displacement current. The law of in-stream current. Maxwell's system of equations in integral and differential forms. Fundamental-material and material equations. Electromagnetic waves.

Section 4. Molecular Physics.

Topic 3.1 Fundamentals of the molecular-kinetic theory of ideal gas.

Molecular physics and thermodynamics, their tasks and methods. Macroscopic parameters and their microscopic interpretation. Laws of ideal gases. Equation of the state of ideal gas. The basic equation of the molecular-kinetic theory of gas. Temperature.

Topic 3.2. Fundamentals of thermodynamics.

Internal energy of the thermodynamic system. Heat, work, heat capacity. The first law of thermodynamics. Isoprocesses of ideal gas: isochoric, isobaric, isothermal, adiabatic processes. Circular processes. Carnot cycle and its efficiency. Clausius's inequality. Entropy and its properties. The second law of thermodynamics. Internal energy, Helmholtz energy, potential Gibbs, enthalpy. Nerst's theorem Topic 3.3. Real gases. Liquids Crystals.

Distribution of energy by degrees of freedom. Transition phenomena in gases. General properties and structure of liquids. Viscosity. Surface tension. Wetting and capillary phenomena. The main characteristics of crystals. Force of communication in solids. Defects Thermal expansion of solids. Heat capacity of solids.

Topic 3.4. Phases Phase transformation. Phase transitions of type I and II.

4. Training materials and resources

Basic literature:

1. Kucheruk I.M., Gorbachuk I.I., Lutsyk P.P. General course of physics. Mechanics, molecular physics and thermodynamics. - K: Technica, 1999.

2. Kucheruk I.M., Gorbachuk I.I., Lutsyk P.P. General course of physics. Electricity and magnetism. - K: Technica, 2001.

3. Saveliev IV The course of general physics, vols. 1. -M. : Nauka, 1982.

4. Saveliev IV The course of general physics, vols. 2. -M. : Nauka, 1982.

5. Irodov I. E. Problems in general physics. - M.: Nauka, 1987 or SPb .: Lan' 2001.

Additional literature:

6. Sivukhin DV The general course of physics. - M.: Nauka, 1977 - 1986, vol. 1.

7. Sivukhin DV The general course of physics. - M.: Nauka, 1977 - 1986, vol. 3.

8. Matveev AN Mechanics and the theory of relativity. - M .: Vyschaya Shkola, 1986.

9. Matveev AN Electricity and magnetism. - M .: Vyschaya Shkola, 1983.

10. Irodov I.E. Mechanics Basic Laws. - M: Laboratory of Basic Knowledge, 2000.

11. Irodov I.E. Electromagnetism. Basic Laws. - M: Laboratory of Basic Knowledge, 2002.

12. Methodological guidelines for laboratory work No. 4 (1) "Study of the dynamics of the simplest systems using the Atwood machine" from the section "Mechanics" of the general physics course. Yakunina N.O., Fedotov V.V., Yurchenko I.O. - K .: NTUU "KPI", 2006 - 12 pp.

13. Methodological instructions for laboratory work № 6 (1) "Determination of moments of inertia of bodies by the method of a trifiline suspension" from the section "Mechanics" of general physics course / Yakunina N.O., Yurchenko I.O., Fedotov V.V. - K .: NTUU "KPI", 2006 - 16 p.

14. Methodological instructions for laboratory work No. 7 (1) "Studying the rotational motion of a solid and determining the velocity of a ball with a torsion ballistic pendulum" from the section "Mechanics" of general physics. Yakunina N.O., Yurchenko I. O., Fedotov V.V. - K .: NTUU "KPI", 2006 - 12 p.

15. Cherkashin VP Laboratory Practicum on Physics (Electricity and Magnetism). - K: Vyscha Shkola, 1988.

16. Berkeley Physics Course. - M: Nauka, 1975 - 1977, Vol. 1.2

17. Feynman R., Leighton R., Sands. Feynman lectures on physics. - M: Mir, 1977.

18. Firgant E.V. Guide to solving problems in the course of general physics.

19. Belikov B. S. Solution of problems in physics. - M .: Vyschaya Shkola, 1986.

20. "Electric field of charges in a vacuum". Terms of tasks for the design work / compilers Assoc. Briginets VP, Assoc. Guseva O.O.

21. Molecular physics. Methodical instructions for laboratory work in physics. – K.: publisher "Pugach O.V.", 2009.-40 p.

Educational content

5. Methods of mastering the discipline (educational component)

The educational part of the discipline consists of lecture material, practical and laboratory classes and control activities. When teaching the course, it is recommended to build students' familiarity with the subject so that they not only receive information about the course being studied, but also feel the connection between different topics of the credit module, as well as the place of the module among other physical disciplines. The general methodological approach to teaching the discipline is defined as communicative-cognitive and professional-oriented, according to which the center of the educational process is the student - the subject of study and the future specialist.

Lections

Lections	
Lection № 1	Kinematics of the material point
	Introduction. Mechanical motion. Reference frame Subject mechanics. Kinematics and dynamics. Models of classical mechanics: material point (particle), system of material points, absolutely solid body. Relativistic and quantum mechanics.
<u>Literature</u>	[1], 1.1, 1.3,1.4; [3], 1-4 [10], 1.1.
Lection № 2	Kinematics of the material point
	Kinematic description of the movement. Trajectory, path and movement, speed and acceleration. General equations of kinematics of the material point.
<u>Literature</u>	[1], 1.1, 1.3,1.4; [3], 1-4 [10], 1.1.
Lection № 3	Kinematics of a solid
<u>Literature</u>	Tangential, normal and complete acceleration.Progressive, rotational and flat motion of a rigid body. Angulardisplacement, angular velocity and angular acceleration. The connectionbetween angular and linear values.[1], 1.2, 1.5, 1.6;
	[3], 5
Lection № 4	Basic laws of classical dynamics. Non-inertial reference frameworks
	Inertial reference systems. Strength and weight. The basic equation of the motion of a classical particle Non-inertial reference frameworks. Description of motion in non- inertial reference systems. Inertia forces. Inertia forces in rotating reference systems
<u>Literature</u>	[1], 2.3, 2.4; [3], 6-17 [1], 8.1 – 8.4; [3], 32-35.
Lection № 5	The law of conservation of momentum. Center of mass
	The momentum of the material point and system, the connection between momentum and force. The law of conservation of momentum. Center of the masses of the system, the law of the movement of the center of masses.
<u>Literature</u>	[1], 2.3, 2.5; [3], 8, 18, 27, 28
Lection № 6	Work and power of force. Potential energy. The law of

Work and power of force. Work of variable power. Kinetic energy of a point and a mechanical system. Conservative forces. Potential energy of a point and a mechanical system. The connection between the potential energy and the force. Non-conservative and dissipative forces, the work of dissipative forces. Complete mechanical energy and the system. The connection between complete mechanical energy and the work of forces. The law of conservation of mechanical energy Literature [1], 3.1 – 3.7; [3], 18–26 Lection Ne 7 Equation of moments. The moment of solid state inertia Angular dynamic values. Moment of momentum and moment of force. Equation of moments for a particle system. The law of conservation of moments for a particle system. The law of conservation of moments for a particle system. The law of inertia. Literature [1], 2.9; [3], 36-38 Literature [1], 4.1, 4.2; [3], 39 Lection Ne 8 Solid state dynamics Solid state dynamics The equation of the dynamics of the rotational motion of a solid. Kinetic energy of the body in the rotational and flat motion of a solid. Kinetic energy of the body in the rotational and physical pendulums. Adding oscillations using a vector diagram. Adding oscillations using a vector diagram. Adding oscillations using a vector diagram. Equation of free, attenuating, forced oscillations and analysis of their solutions. Oscillations of mathematical and physical pendulums. Adding oscillations using a vector diagram. Adding oscillations using a vector diagram. Adding oscillations of for elativity. Kinematics of the special theory of relativity. Relativistic dynamics The transformation of Galilee and the principle of the relativity of classic		conservation of mechanical energy
Literature [1], 3.1 – 3.7; [3], 18–26 Lection Ne 7 Equation of moments. The moment of solid state inertia Angular dynamic values. Moment of momentum and moment of force. Equation of moments for a particle and a particle system. The law of conservation of momentum momentum. Moment of inertia. Calculation of moments of inertia of solids, Steiner's theorem, and other theorems that help to calculate the moment of inertia. Literature [1], 2.9; [3], 36-38 [1], 4.1, 4.2; [3], 39 Lection Ne 8 Solid state dynamics The equation of the dynamics of the rotational motion of a solid. Kinetic energy of the body in the rotational and flat motion of a solid. Kinetic energy of the body in the rotational and physical pendulums. Adding oscillations using a vector diagram. [1], 10.1-10.11; [3], 49-61 Postulates of the special theory of relativity. Kinematics of the special theory of relativity. Relativistic dynamics The transformation of Galileo and the principle of the relativity of classical mechanics. Postulates of the special theory of relativity. The transformation of Lorentz and the consequences of them. Converting speeds. Speed limit with. Relativistic impulse. The equation of a relativistic particle, Einstein's formula. Literature [1], 1.1, 2.6, 9.1–9.8; [3], 62–71 [1], 1.1, 2.6, 9.1–9.8;		Work and power of force. Work of variable power. Kinetic energy of a point and a mechanical system. Conservative forces. Potential energy of a point and a mechanical system. The connection between the potential energy and the force. Non-conservative and dissipative forces, the work of dissipative forces. Complete mechanical energy of the system. The connection between complete mechanical energy and the
Lection Ne 7 Equation of moments. The moment of solid state inertia Angular dynamic values. Moment of momentum and moment of force. Equation of moments for a particle and a particle system. The law of conservation of momentum momentum. Moment of inertia. Calculation of moments of inertia of solids, Steiner's theorem, and other theorems that help to calculate the moment of inertia. Literature [1], 2.9; [3], 36-38 [1], 4.1, 4.2; [3], 39 [3], 36-38 Lection Ne 8 Solid state dynamics The equation of the dynamics of the rotational motion of a solid. Kinetic energy of the body in the rotational and flat motion of a solid. Kinetic energy of the body in the rotational and flat motion of a solid. Kinetic energy of free, attenuating, forced oscillations and analysis of their solutions. Oscillations Lection Ne 9 Mechanical oscillations Equation of free, attenuating, forced oscillations and analysis of their solutions. Oscillations of mathematical and physical pendulums. Adding oscillations using a vector diagram. Literature [1], 10.1-10.11; [3], 49-61 Postulates of the special theory of relativity. Kinematics of the special theory of relativity. The transformation of Lorentz and the consequences of them. Converting speeds. Speed limit with. Relativistic dynamics The transformation of Lorentz and the consequences of them. Converting speeds. Speed limit with. Relativistic impulse. The equation of a relativistic particle. Kinetic energy of a relativistic particle, Einstein's formula.	<u>Literature</u>	
Angular dynamic values. Moment of momentum and moment of force. Equation of moments for a particle and a particle system. The law of conservation of momentum momentum. Moment of inertia. Calculation of moments of inertia of solids, Steiner's theorem, and other theorems that help to calculate the moment of inertia. Literature [1], 2.9; [3], 36-38 [1], 4.1, 4.2; [3], 39 Lection Ne 8 Solid state dynamics The equation of the dynamics of the rotational motion of a solid. Kinetic energy of the body in the rotational and flat motion of a solid. Kinetic energy of the body in the rotational and flat motion of a solid. Kinetic energy of the body in the rotational and physical pendulums. Adding oscillations suitations Lection Ne 9 Mechanical oscillations Equation Ns 10 Postulates of the special theory of relativity. Kinematics of the special theory of relativity. The transformation of Galileo and the principle of the relativity of classical mechanics. Postulates of the special theory of relativity. The transformation of Lorentz and the consequences of them. Converting speeds. Speed limit with. Relativistic impulse. The equation of a relativistic particle. Kinetic energy of a relativistic particle. Einstein's formula. Literature [1], 1.1, 2.6, 9.1–9.8; [3], 62–71 [1], 1.1, 2.6, 9.1–9.8;		
force. Equation of moments for a particle and a particle system. The law of conservation of momentum momentum. Moment of inertia. Calculation of moments of inertia of solids, Steiner's theorem, and other theorems that help to calculate the moment of inertia. Literature [1], 2.9; [3], 36-38 [1], 4.1, 4.2; [3], 39 Lection Ne 8 Solid state dynamics The equation of the dynamics of the rotational motion of a solid. Kinetic energy of the body in the rotational and flat motion of a solid. Kinetic energy of the body in the rotational and flat motion of a solid. Kinetic solutions. Oscillations Lection Ne 9 Mechanical oscillations Equation of free, attenuating, forced oscillations and analysis of their solutions. Oscillations of mathematical and physical pendulums. Adding oscillations using a vector diagram. Literature [1], 1.0.1-10.11; [3], 49-61 Postulates of the special theory of relativity. Kinematics of the special theory of relativity. Converting special mechanics. Postulates of the special theory of relativity. The transformation of a lociescial mechanics. Postulates of the special theory of relativity. The transformation of a converting species. Speed limit with. Relativistic impulse. The equation of a relativistic particle. Kinetic energy of a relativistic particle, Einstein's formula. Literature [1], 1.1, 2.6, 9.1–9.8; [3], 62–71 [1], 1.1, 2.6, 9.1–9.8;	Lection № 7	
Image: Second		force. Equation of moments for a particle and a particle system. The law of conservation of momentum momentum. Moment of inertia. Calculation of moments of inertia of solids, Steiner's theorem, and other theorems that help to calculate the moment
The equation of the dynamics of the rotational motion of a solid. Kinetic energy of the body in the rotational and flat motion of a solid. Literature [1], 4.3, 4.4; [3], 38, 41 Lection Ne 9 Mechanical oscillations Equation of free, attenuating, forced oscillations and analysis of their solutions. Oscillations of mathematical and physical pendulums. Adding oscillations using a vector diagram. Literature [1], 10.1-10.11; [3], 49-61 Postulates of the special theory of relativity. Kinematics of the special theory of relativity of classical mechanics. Postulates of the special theory of relativity. The transformation of Lorentz and the consequences of them. Converting speeds. Speed limit with. Relativistic impulse. The equation of a relativistic particle, Einstein's formula. Literature [1], 1.1, 2.6, 9.1–9.8; [3], 62–71 [1], 1.1, 2.6, 9.1–9.8;	<u>Literature</u>	[3], 36-38 [1], 4.1, 4.2;
Kinetic energy of the body in the rotational and flat motion of a solid. Literature [1], 4.3, 4.4; [3], 38, 41 Lection № 9 Mechanical oscillations Equation of free, attenuating, forced oscillations and analysis of their solutions. Oscillations of mathematical and physical pendulums. Adding oscillations using a vector diagram. Literature [1], 10.1-10.11; [3], 49-61 Postulates of the special theory of relativity. Kinematics of the special theory of relativity. Converting special theory of relativity. The transformation of Galileo and the principle of the relativity of classical mechanics. Postulates of the special theory of relativity. The transformation of Lorentz and the consequences of them. Converting speeds. Speed limit with. Relativistic impulse. The equation of motion of a relativistic particle. Kinetic energy of a relativistic particle, Einstein's formula. Literature [1], 1.1, 2.6, 9.1–9.8; [3], 62–71 [3], 62–71	Lection № 8	Solid state dynamics
Lection № 9 Mechanical oscillations Equation of free, attenuating, forced oscillations and analysis of their solutions. Oscillations of mathematical and physical pendulums. Adding oscillations using a vector diagram. Literature [1], 10.1-10.11; [3], 49-61 Lection № 10 Postulates of the special theory of relativity. Kinematics of the special theory of relativity. Relativistic dynamics The transformation of Galileo and the principle of the relativity. The transformation of Lorentz and the consequences of them. Converting speeds. Speed limit with. Relativistic impulse. The equation of motion of a relativistic particle. Kinetic energy of a relativistic particle, Einstein's formula. Literature [1], 1.1, 2.6, 9.1–9.8; [3], 62–71	<u>Literature</u>	Kinetic energy of the body in the rotational and flat motion of a solid. [1], 4.3, 4.4;
Equation of free, attenuating, forced oscillations and analysis of their solutions. Oscillations of mathematical and physical pendulums. Adding oscillations using a vector diagram.Literature[1], 10.1-10.11; [3], 49-61Lection № 10Postulates of the special theory of relativity. Kinematics of the special theory of relativity. Relativistic dynamicsLiteratureThe transformation of Galileo and the principle of the relativity of classical mechanics. Postulates of the special theory of relativity. The transformation of Lorentz and the consequences of them. Converting speeds. Speed limit with. Relativistic impulse. The equation of motion of a relativistic particle. Kinetic energy of a relativistic particle, Einstein's formula.Literature[1], 1.1, 2.6, 9.1–9.8; [3], 62–71		
Image: Interature Image: I	Lection № 9	
[3], 49-61 Lection № 10 Postulates of the special theory of relativity. Kinematics of the special theory of relativity. Relativistic dynamics Special theory of relativity. Relativistic dynamics The transformation of Galileo and the principle of the relativity of classical mechanics. Postulates of the special theory of relativity. The transformation of Lorentz and the consequences of them. Converting speeds. Speed limit with. Relativistic impulse. The equation of motion of a relativistic particle. Kinetic energy of a relativistic particle, Einstein's formula. Literature [1], 1.1, 2.6, 9.1–9.8; [3], 62–71		their solutions. Oscillations of mathematical and physical pendulums.
special theory of relativity. Relativistic dynamics The transformation of Galileo and the principle of the relativity of classical mechanics. Postulates of the special theory of relativity. The transformation of Lorentz and the consequences of them. Converting speeds. Speed limit with. Relativistic impulse. The equation of motion of a relativistic particle. Kinetic energy of a relativistic particle, Einstein's formula. Literature [1], 1.1, 2.6, 9.1–9.8; [3], 62–71	<u>Literature</u>	
classical mechanics. Postulates of the special theory of relativity. The transformation of Lorentz and the consequences of them. Converting speeds. Speed limit with. Relativistic impulse. The equation of motion of a relativistic particle. Kinetic energy of a relativistic particle, Einstein's formula. Literature [1], 1.1, 2.6, 9.1–9.8; [3], 62–71	Lection № 10	
[3], 62–71		The transformation of Galileo and the principle of the relativity of classical mechanics. Postulates of the special theory of relativity. The transformation of Lorentz and the consequences of them. Converting speeds. Speed limit with. Relativistic impulse. The equation of motion of a relativistic particle. Kinetic energy of a relativistic particle, Einstein's
Lection № 11 Electric field tension. Potential of electric field	<u>Literature</u>	
	Lection № 11	Electric field tension. Potential of electric field

	Electric charge and electromagnetic field. Electric field, field strength vector. Point charge field. The principle of superposition The difference in potentials and potential. Relationship between
	the potential and the strength of the electrostatic field.
<u>Literature</u>	[2], 1.1, 1.5;
	[4], 1, 5.
	[2] 1.10, 1.11;
	[4], 6–8.
 Lection № 12	Gauss electrostatic theorem. Electric dipole
	Flow of the vector field. Integral and differential forms of the
	Gauss electrostatic theorem for a field in a vacuum.
	<i>Electric dipole. Potential and electric dipole tension. The force and moment of forces acting on an electric dipole in an external electric field.</i>
<u>Literature</u>	[2], 1.7;
<u>Literature</u>	[4], 13, 14.
	[2], 1.6 ;
	[4], 9.
Lection № 13	Electric field in dielectrics and conductors
	Dielectrics and conductors. Macroscopic field in matter.
	Polarization of dielectrics, polarization (bound) charges, polarization.
	Vector of electric displacement, Gauss theorem for an electric field in the
	presence of an insulator.
<u>Literature</u>	[2], 1.16, 1.20, 1.12, 1.13;
Lastian No. 14	[4], 15–25
Lection № 14	<i>Electric field in dielectrics and conductors</i> <i>Field in an isotropic dielectric, dielectric susceptibility and</i>
	permeability. Conditions on the boundary between two dielectrics.
	Conductor in an external electric field, electrostatic induction.
	Electric field of a charged conductor.
<u>Literature</u>	[2], 1.16, 1.20, 1.12, 1.13;
	[4], 15–25
Lection № 15	Electrical capacity. Energy of the electric field
	Electric capacitance, capacitors. Electrostatic energy. Localization
	of electrostatic energy, volumetric electric energy density.
<u>Literature</u>	[2], 1.14, 1.25, 1.26;
	[4], 26–30.
Lection № 16	DC laws. Electric circuits
	Size and current density, current line. The laws of Oma and Joule-
	Lentz in the local (differential) form.
	External forces, voltage drop and electromotive force (EMF). Ohm's law for any stake.
1 it and the	
ΙΙΤΟΓΛΤΙΙΓΟ	
<u>Literature</u>	[2], 2.1, 2.2, 2.4, 2.5; [4], 31, 32, 34, 37, 38.

	[2], 2.3, 2.6, 2.7;
	[4], 35, 36.
Lection № 17	Magnetic field of currents. Ampere's law. Flow and circulation of
	a magnetic field. Magnetic field in matter
	Magnetic interaction, vector of magnetic induction. Magnetic
	field of conductor with current, the law of Bio-Savar. Magnetic fields of
	the simplest systems.
	The effect of the magnetic field on the current, Ampere's law.
	Circuit with current in external magnetic field.
	Basic equations of magnetostatics in a vacuum: the Gauss
	integral theorem and the theorem on the circulation of the magnetic field of currents.
	The nature of the magnetism of matter. Magnetization and
	magnetization. Magnetization of an isotropic magnet, magneti
	susceptibility and permeability. Magnetic field tension vector
	Theorem on the circulation of a magnetic field in a substance.
<u>Literature</u>	[2], 8.1, 8.4;
	[4], 39, 40, 42.
	[2], 8.2, 8.3, 8.5–8.7;
	[4], 39, 41, 43–49.
	[2], 9.1, 9.2, 9.3;
	[4], 51.
	[2], 9.2;
	[4], 52–54.
Lection № 18	Electromagnetic induction. Magnetic field energy. Vortica
	electric field and bias current. Equation of electromagnetic field
	Electromagnetic waves The phenomenon of electromagnetic induction. Rule of Lenz
	Faraday's Law. Inductance contour, self-induction. Magnetic curren
	energy. Localization of magnetic energy, energy density of a magnetic
	field.
	Vortical electric field. Displacement current. The law of fu
	current.
	Maxwell's system of equations in integral and differential forms
	Fundamental and material equations. Electromagnetic waves
<u>Literature</u>	[2], 10.1, 10.2, 10.4, 10.6;
	[4], 60–68.
	[2], 13.1–13.4;
	[2], 13.1–13.4; [4], 69, 70
	[2], 13.1–13.4;

Practical classes

The main goals of the cycle of practical classes:

- consolidation of the assimilation of the content of the lecture material;
- assimilation of methods of analysis of physical phenomena;
- development of the ability to calculate physical quantities by analytical expressions;
- development of the ability to use mathematical apparatus for solving certain physical

Nº 1		Kinemati	cs of t	he material point	
	Basic concepts, magnitudes and equations of point kinematics				
	Literatu			1.1, 1.19, 1.23, 1.24	
		the IWS		Nº№ 1.20, 1.22, 1.25	
Nº 2			rs of t	he material point	
/ -				magnitudes and equations of point kinematics	
	Literatu			1.28, 1.29, 1.30	
		the IWS	142142	Nº№ 1.26, 1.27, 1.35	
Nº 3		Kinemati	cs of a		
N2 J			-	ion of a rigid body	
	Literatu			1.38, 1.39	
		the IWS		Nº№ 1.37, 1.40, 1.41, 1.46	
Nº 4		Kinemati			
₩2 4			-	a rigid body.	
	Literatu			2 1.42, 1.53	
		e the IWS			
Nº 5		The basic		№№ 1.47, 1.52	
Nº 5		Newton's		ynamics	
				1.62	
	<u>Literatur</u>		N⁰Nº		
No C		the IWS		Nº№ 1.62, 1.64	
Nº 6		The basic			
		Basic equation of motion of a material point. rature №№ 1.69			
	<u>Literatur</u>				
No 7		the IWS		Nº№ 1.67, 1.89	
Nº 7		The basic			
		-	lation	of motion of a material point. Movement in non-inertial reference	
		systems	N⁰Nº	1 04	
	<u>Literatur</u>				
No O		the IWS		№№ 1.90, 1.92	
Nº 8		Moment		convertion of momentum	
			-	servation of momentum.	
	litoratur	•		d movement of the center of the masses of the system	
	<u>Literatu</u>	e		1.121, 1.122	
			Neive	1.126, 1.127, 1.129 No. 1, 112	
	Tasks on	the IWS		NºNº 1.112 NoNº 1.116	
No O		Morken	d	Nº№ 1.116	
			nd energy		
			•	ver of force. Kinetic and potential energy. The connection between	
		cal energy and the work of forces			
	<u>Literatur</u>		NONO	1.144, 1.147, 1.155 NoNo 1 120, 1 140	
Nic 1		the IWS	d a	Nº№ 1.139, 1.140	
Nº 1	U	Work and			
		The law	uj con	servation of mechanical energy. Simultaneous saving of energy and	

momentum				
<u>Literature</u>		NeNe	2 1.159, 1.176, 1.178, 1.183	
		n the IWS		№№ 1.158
-			-	lid body dynamics
		Calculation of moments of inertia of solids		
	<u>Literatu</u>			2 1.256
			· · · · · · · · · · · · · · · · · · ·	2 1.260
	<u>Tasks o</u>	n the IWS		Nº№ 1.257
	-	-1 .		№№ 1.281, 1.282
Nº 1	2		-	lid body dynamics
			-	mentum and moment of inertia. The equation of the dynamics of the
	1:++-			on of a solid. Saving the momentum to the axis
	<u>Literatu</u>	<u>ire</u>		2 1.198, 1.268
	Taska a	n tha UA/C	NEINE	2 1.278, 1.290
	TUSKS O	n the IWS		Nº№ 1.195, 1.207, 1.262, 1.263
No 1	2	Machani	cal flu	Nº№ 1.266, 1.267, 1.280
Nº 1	3		-	ctuations. of the special theory of relativity
		MCW-1	muis	of the special theory of relativity
		-	ofma	chanical oscillations
		-	-	ation of Lorentz and the consequences of them. Relativistic law of
			-	ormation. Speed limit with. Relativistic impulse. The equation of
		-	-	ativistic particle
		-		work for partition 1. Physical basis of mechanics
<u>Literature</u> Nº№ 4.1, 4.3				
	<u></u>			ire notes and practical exercises
	Tasks o	n the IWS		№№ 4.4, 4.7
				№№4.13, 4.24
				Nº№ 4.11, 4.14, 4.47
				№№ 1.364, 1.366, 1.369, 1.380, 1.384
				№№ 1.370, 1.372, 1.373, 1.385
Nº 1	4	Electrost	atic fie	eld in vacuum
			-	the intensity and potential of the electric field of discrete and
			-	arge distributions by the superposition principle and through the
		connectio	on bet	ween stress and potential.
	<u>Literatu</u>	ire	N⁰Nº	2 3.9, 3.12, 3.16, 3.18, 3.35, 3.36, 3.48
	Tasks o	n the IWS		№№ 3.8, 3.13, 3.14, 3.28, 3.31, 3.34
Nº 1	5	Electrost	atic fie	eld in vacuum
		Calculatio	on of	spherical, cylindrical, and plane symmetric electric fields using the
		Gauss the	eorem	
	<u>Literatu</u>	<u>ire</u>	N⁰N⁰	3.22
	Tasks o	<u>n the IWS</u>		№№ 3.23, 3.25, 3.26
Nº 1	6	Electrost	atic fie	eld in vacuum
Poisson equation. Electric de			quatio	on. Electric dipole
	<u>Literatu</u>	ire	N⁰N⁰	3.51
	Tasks o	n the IWS		3.50 ,3.49, 3.42, 3.43, 3.46
Nº 1	7	Electrost	atic fie	eld in matter
		Electric fi	ield in	dielectrics.

	<u>Literatu</u>	<u>re</u>	N⁰Nº	2 3.74, 3.96	
	Tasks o	n the IWS		№№ 3.78, 3.85	
Nº 1	8	Electrost	atic fie	eld in matter	
Conductors in the electric field.					
		Power co	nsum	ption. Capacitors	
	Energy of the electric field.				
	<u>Literatu</u>	ire	N⁰Nº	2 3.58, 3.104, 3.138	
	Tasks o	n the IWS		№№ 3.59, 3.64, 3.103, 3.105, 3.106, 3.137, 3.139, 3.140, 3.143.	
Nº 1	9	Direct ele	ectrica	Il current	
		Characte	ristics	and laws of electric current. Calculation of electric circuits of direct	
		current			
	<u>Literatu</u>	<u>re</u>	N⁰Nº	2 3.156, 3.157, 3.181, 3.183	
	<u>Tasks o</u>	n the IWS		№№ 3.169, 3.174, 3.175, 3.176, 3.177	
<i>№ 2</i>	20	Magnetic	c field	in vacuum	
		Calculatio	on of	magnetic fields of currents by means of the Bi-Savar law and	
		circulatin	g theo	prems	
	<u>Literatu</u>	re	N⁰N⁰	2 3.224, 3.225	
	Tasks o	n the IWS		№№ 3.221, 3.227, 3.234, 3.241, 3.250, 3.251, 3.256, 3.260, 3.261a.	
<i>№ 2</i>	21	Magnetic	c field	in matter	
		Calculatio	on of	the magnetic field in the substance. Determination of the Ampere	
		force acti	ing in d	a magnetic field on currents of different configurations	
	<u>Literatu</u>	<u>re</u>	N⁰N⁰	2 3.290	
	Tasks of	n the IWS		№№ 3.281, 3.282, 3.284, 3.285, 3.291, 3.294, 3.295.	
<i>№ 2</i>	2	Electrom	agnet	ic induction	
			ation	of the EMF and the direction of induction current according to the	
		basic la	w of electromagnetic induction. Calculation of contour inductance.		
		Electrom	agneti	ic oscillations	
	<u>Literatu</u>	<u>re</u>	N⁰Nº	2 3.299, 3.302, 3.309, 3.320	
	<u>Tasks o</u>	n the IWS		№№ 3.300, 3.303, 3.304, 3.305, 3.324, 3.327, 3.334, 3.338, 3.351	
<i>№</i> 2	3	Maxwell	's equ	ation	
		MCW-2			
		Applicatio	on of t	the integral and differential form of the Maxwell equations.	
		Modular	contro	ol work for partition 3. Electricity and Magnetism and from Section 4.	
		Electrom	agneti	ism. Fluctuations and waves	
	<u>Literatu</u>	<u>re</u>	N⁰N⁰	2 3.317	
			Lectu	ire notes and practical exercises	
		n the IWS		№№ 3.363, 3.364, 3.365, 3.366, 3.370, 3.371, 3.372	
Nº 2	4			of the molecular-kinetic theory of ideal gas	
		Boltzman	n dist	ribution (discussion of theoretical questions and experiment modeling)	
	<u>Literature</u> <u>Tasks on the IWS</u>		[21]		
				Prepare an abstract on the questions of the program from the	
				section.	
Prepare a protocol for laboratory work with answers to contro questions					
Nº 2	5	Fundame	entals	of thermodynamics	
	-			of the ratio of heat capacity of gas at constant pressure to its specific	
				int volume (discussion of theoretical questions and modeling of the	
		ехпенте	nti		
	<u>Literatu</u>	experime I re	nt) [21]		

	<u>Tasks o</u>	n the IWS		Prepare an abstract on the questions of the program from the section. Prepare a protocol for laboratory work with answers to control questions
Nº 2	?6	Real gase	es. Liq	uids Crystals
				laminar flow of gas through thin pipes (discussion of theoretical simulation of the experiment)
	<u>Literatu</u>	ire	[21]	
	<u>Tasks on the IWS</u>			Prepare an abstract on the questions of the program from the section. Prepare a protocol for laboratory work with answers to control questions
Nº 2	?7	Real gase	es. Liq	uids Crystals
				of the viscosity coefficient of a fluid by the Stokes method (discussion questions and simulation of the experiment)
	<u>Literature</u> [21]		[21]	
	<u>Tasks o</u>	n the IWS		Prepare an abstract on the questions of the program from the section. Prepare a protocol for laboratory work with answers to control questions

Laboratory works

The main tasks of the cycle of laboratory works:

The main tasks of laboratory lessons from this credit module:

- consolidation of the assimilation of the content of the lecture material;

- assimilation of methods of analysis of physical phenomena;

- development of the ability to experiment with physical phenomena;

- development of the ability to calculate physical quantities by analytical expressions;

- development of the ability to apply a mathematical device for the study of certain physical phenomena.

N₽	Name of laboratory work	Number of hours
1	Introduction, safety precautions when performing laboratory work. Measurement of physical size and processing of the obtained results.	2
2	Investigation of the dynamics of the simplest systems using the Atwood machine.	2
3	Determination of moments of inertia of bodies by the method of a trifiline suspension.	2
4	Investigation of the rotational motion of a solid and determining the speed of the ball with the help of a torsion ballistic pendulum.	2
5	Colloquium of laboratory lessons	2
6	Study of electrostatic field.	2
7	Removal of the magnetization curve and the hysteresis loop of ferromagnets in variable magnetic fields.	2

8	Investigation of free dip oscillations in the contour.	2
9	Colloquium of laboratory lessons	2

6. Independent student work

The student's independent work is the main means of mastering the study material in his free time and includes:

Nº	Type of independent work	Number
		hours
1	Preparation for classroom classes	36
2	Preparation for modular control work	6
3	Exam preparation	30
	Total	72

Policy and control

7. Policy of academic discipline (educational component)

Attending classes

Attendance at lectures is optional. Attending practical classes is desirable, as they are used to write express tests / tests, as well as to defend practical work.

The grading system is focused on obtaining points for student activity, as well as performing tasks that are able to develop practical skills and abilities.

Control measures missed

Missed control measures (defense of practical work) must be practiced in the next classes, if the task is scheduled for the current lesson, or in consultations.

Omissions of writing a module test and express test are not fulfilled.

Calculation and graphic work, which is submitted for inspection in violation of the deadline, is evaluated with a decrease in the number of weight points.

Violation of deadlines and incentive points

Encouragement point	Penalty points *				
Criterion Weight po		Criterion	Weight points		
Improving practical work	1 points (for	Untimely implementation	From -0.5 points		
	each practical	and test of practical work	to -5 points		
	work)		(depending on the		
			delivery date)		
Passing distance courses on topics	5 points	Untimely execution and	From -2 points to -		
that are agreed with teachers		test of calculation and	20 points		
		graphic work	(depending on the		
			construction		
			period)		
Registration of scientific work for	10 points				
participation in the competition of					
student scientific works					
Writing abstracts, articles,	5 points				
participation in international,					

national and / or other events or						
competitions on the subject of the						
discipline						

* if the control measure was missed for a good reason (illness, which is confirmed by a certificate of the established sample) - penalty points are not accrued.

Academic integrity

The policy and principles of academic integrity are defined in Section 3 of the Code of Honor of the National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute". Read more: <u>https://kpi.ua/code</u>.

Norms of ethical behavior

Normative principles of behavior of students and employees, defined in sections 2 of the Code of Honor of the National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute". Read more: <u>https://kpi.ua/code</u>.

Procedure for appealing the results of control measures

Students have the opportunity to raise any issue related to the control procedure and expect it to be addressed according to predefined procedures.

The student has the right to appeal the results of the control measure according to the approved provision on appeals in the National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" (approved by the order №NON/128/2021 from 20.05.2021) - <u>https://osvita.kpi.ua/index.php/node/182</u>

Inclusive education

The discipline "<u>Mechanics and molecular physics. Electrostatics. Electromagnetism</u>" can be taught to most students with special educational needs, except for students with severe visual impairments who do not allow to perform tasks using personal computers, laptops and / or other technical means.

Distance learning

Distance learning takes place through the Sikorsky Distance learning Platform «Sikorsky».

Distance learning through additional online courses on certain topics is allowed subject to agreement with students. If a small number of students wish to take an online course on a specific topic, studying the material with such courses is allowed, but students must complete all the tasks provided in the discipline.

The teacher offers the list of courses after the students have expressed a desire (because the bank of available courses is updated almost every month).

The student provides a document confirming the completion of the distance course (in the case of a full course) or provides practical tasks from the distance course and subject to an oral interview with the teacher on the topics can receive grades for control measures provided for the studied topics (express control / test tasks, practical work).

Performance of practical works, and performance of settlement and graphic work, is carried out during independent work of students in a remote mode (with a possibility of consultation with the teacher through e-mail, social networks).

Learning a foreign language

Teaching in English is carried out only for foreign students.

At the request of students, it is allowed to study the material with the help of English-language online courses on topics that correspond to the topics of specific classes.

8. Monitor and evaluate the system of evaluation of learning outcomes (Rating System of Evaluation)

Types of control: Current control: Modular Test Work, Final Test Work.

Calendar control: conducted twice a semester as a monitoring of the current state of compliance with the requirements of the syllabus.

Semester control: exam.

Conditions of admission to the semester control: successful completion of all control works, semester rating not less than 30 points.

In the first lesson, students get acquainted with the rating system of assessment (RSA) of the discipline, which is based on the "Regulations on the system of assessment of learning outcomes", <u>https://document.kpi.ua/files/2020 1-273.pdf</u>.

Rating system for assessing learning outcomes

1. Profile competence in the study of physics of technical profile can be determined by three levels.

• A high level of profile competence is demonstrated by the ability to perform tasks that need to explain or predict phenomena based on their modeling, analyze the results of previous research, compare data, conduct scientific arguments to confirm their position, or evaluate different points of view.

• The average level of profile competence demonstrates the ability to use the acquired knowledge to explain or predict natural phenomena, to identify questions that could be answered by science, to provide information confirming the conclusions formulated by the task.

• Low level - tests the ability to update basic knowledge, facts, provide examples and use basic concepts to confirm the correctness of the already formulated conclusions.

Rating types of educational work

A student's rating in the RD discipline consists of the points he receives for:

1) Work in practical classes: n1 = 10

2) Performance and registration of $n^2 = 9$ laboratory works, their defense at classes during the semester.

3) Execution of n3 = 1 modular control work.

4) Execution of n4 = 1 final test work

5) Answer the exam.

Rating points system and evaluation criteria

Laboratory workshop

Weight score for laboratory lesson $r_{lc} = 5$

0 points - no protocol of laboratory work failure to perform tests;

1-2 points - formal readiness for work, incomplete registration of the protocol, protection not at a high level (answers not to all questions, not enough complete answers, not understanding of the physical phenomena which are investigated in laboratory work), not performance of tests;

3-4 points - full design of the protocol (theoretical part, tables, calculations, graphs); defense of laboratory work at a high level (thorough answers to all questions), performance of tests for 60-70 points;

5 points - full design of the protocol (theoretical part, tables, calculations, graphs); protection of laboratory work at a high level (thorough answers to all questions)

The maximum total score for laboratory classes during the semester is:

$n_1 * r_{lc} = 7 * 5 = 35$

A student must complete all laboratory work curriculum. Weight penalty point for untimely defense of laboratory work r = 2 points. <u>Work on practical classes</u>: $n_2 = 10$ - Active creative work - 0.5 points;

- Fruitful work - 0.3 points;

- Passive work -0 points.

The maximum total score for practical classes during the semester is:

 $n_2 * r_{pc} = 10 * 0.5 = 5$

Modular control (Modular Control Work)

Weight score for control work $r_{MCW} = 10$

0 points - no task is completed, or less than 30% of tasks are completed;

4 points - completed at least 30% of tasks;

7 points - completed at least 60% of tasks;

10 points - completed at least 90% of tasks.

The maximum total score for the test during the semester is:

$n_3 * r_{vcw} = 10 * 1 = 10$

Execution of the Final Test Work:

- Creative work - 15 points;

- The work was performed with minor shortcomings - 12 points;

- The work is done with certain errors - 10-8 points:

- Work is not credited (task not completed or there are gross errors) <5 points.

The maximum total score for the test during the semester is:

*n*₄* *r*_{ftw}=15*1=10

The examination component is 40% of the rating scale and is $R_E = 40$ points Rating scale, final grade from the credit module.

The rating scale for the discipline R_D is formed from the total weight score for work in the semester:

$R_D = n_1^* r_{lc} + n_2^* r_{pc} + n_3^* r_{mcw} + n_4^* r_{ftw} + R_E = 7.5 + 10.0.5 + 10.1 + 10.1 + 40 = 100 \text{ points}$

- The condition for admission to the exam is the successful completion of all tests, as well as a starting rating of at least 30 points.
- In the exam, students solve two problems and give an oral answer to two theoretical questions. Each task in the ticket is evaluated in 10 points according to the following criteria:
- "Excellent", complete answer, not less than 90% of the required information (complete, error-free problem solving) 20-17 points;
- "Good", a fairly complete answer, at least 75% of the required information or minor inaccuracies (complete solution of the problem with minor inaccuracies) 16-13 points;
- "Satisfactory", incomplete answer, not less than 60% of the required information and some errors (the task is performed with certain shortcomings) 12-8 points;

- "Unsatisfactory", the answer does not meet the conditions for "satisfactory" - 0 points.

To objectively assess the student's knowledge, the teacher has the right to ask additional questions from the course program, which are not contained in the ticket.

Table of translation of rating points to grades on a university scale:

Number points	Assessment on the university scale
100-95	Perfectly / Відмінно
94-85	Very good / Дуже добре
84-75	Good / Добре
74-65	Satisfactorily / Задовільно
64-60	Enough /Достатньо
Less 60	Unsatisfactorily / Незадовільно
Admission conditions are not met	Not allowed / Не допущено

9. Additional information on the discipline (educational component)

• The list of questions is given in the KPI Electronic Campus named after Igor Sikorsky and in the course folder on the Sikorsky platform.

• Certificates of distance or online courses on the subject can be credited subject to the requirements set out in the ORDER № 7-177 FROM 01.10.2020 "On approval of the provisions on recognition in the KPI. Igor Sikorsky learning outcomes acquired in non-formal / informal education.

Work program of the discipline (syllabus):

Compiled by a senior lecturer, Ph.D., Khist V.V.

Approved by the Department of General and Experimental Physics and the Department of General and Theoretical Physics (minutes of the joint meeting of the departments № 1 from 22.06.2021), reorganized from 01.07.2021 into the Department of General Physics.

Approved by the Methodical Commission of the Faculty of Physics and Mathematics (protocol № _11_ from 23.06.2021)