
1

UNIVERSITY OF BAGHDAD

College of Education for Pure Science

 (Ibn Al-Haitham)

Department of Computer Science

Microprocessor 8086
Second Stage

Dr. Alaa Abdul Hameed Abdul Lateef

2

Introduction to Computer

A computer is an electronic device, operating under the control of

instructions stored in its own memory that can accept data (input), process

the data according to specified rules, produce information (output), and

store the information for future use.

Types of Computers

There are four types of computer:

1. Microcomputers - Personal Computers

 Microcomputers sit on, beside or under a desk. They process data

quickly and are designed for one user. The cost is relatively low, depending

on the type, model and features. These computers are found in small

businesses, schools and homes. The size of the components that can be

used in or with a computer have decreased significantly as well as

becoming more cost effective, There are many different types of programs

that can be used with a microcomputer, there are generally two types of

microcomputers: the PC (personal computer) based on the original IBM

machine, or the Macintosh designed by Apple.

Microsoft Office is available for both the PC and Apple machines. The

software works exactly the same on either machine. The majority of

companies use PCs to handle their work requirements. This may primarily

be due to the wide variety of software programs available to the PC

machine and the relative lower cost of a PC as compared to an Apple

machine.

3

2. Supercomputer

 A supercomputer is considered to be the fastest type of computer

available. It is very expensive due to the amount of information that needs

to be processed on a daily basis. The first supercomputer was created in

1958 with tremendous advancement in technology over the past years.

Supercomputers generally have specialized software programs installed

and are typically used for scientific and engineering tasks such as

forecasting weather, nuclear energy research, resource exploration, or

animation. Supercomputers put all its power into running and performing

calculations on a few programs as quickly as it can. Typically, it can handle

very large databases and perform a huge number of calculations very

quickly.

3. Mainframe computers

Mainframe computers are large enough to fill an entire room and require a

large capital investment. They can simultaneously handle hundreds of

different programs and users without sacrificing performance. They

process large volumes of data at an incredible speed. Mainframes are

commonly found in government agencies or large organizations, e.g.,

telephone companies, credit card companies, airlines, or universities. For

instance, you access a mainframe computer whenever you use your

bankcard at an Automated Teller Machine (ATM). Mainframe computers

can sometimes be called centralized systems as they control the flow of

data to and from computers or terminals.

4. Minicomputers

Minicomputers can fill part of a room, and often cost tens of thousands of

dollars. They process data at a slower rate and in smaller volumes than the

mainframe computers. Several people can use a minicomputer

4

simultaneously; but as the number of users increases, each user would

notice a reduction in speed. Minicomputers are commonly found in

medium-sized manufacturing companies, legal or accounting firms, and

department store where the scanners in a grocery store would link to a

minicomputer.

Computer Components

Any kind of computers consists of Software and Hardware:

 Software

Software is a generic term for organized collections of computer data and

instructions, often broken into two major categories: system software that

provides the basic non-task-specific functions of the computer, and

application software which is used by users to accomplish specific tasks.

 Hardware:

Computer hardware is the collection of physical elements that constitutes

a computer system. Computer hardware refers to the physical parts or

components of a computer such as the monitor, mouse, keyboard, etc. all

of which are physical objects that can be touched.

Basic Blocks of a microcomputer

All microcomputers consist of (at least):

1. Microprocessor Unit (MPU) MPU is the brain of microcomputer

2. Program Memory (ROM)

3. Data Memory (RAM)

4. Input / Output ports

5. Bus System

5

Fig. 1: Basic Block of a Microcomputer

Central Processing Unit (CPU)

A CPU is brain of a computer. It is responsible for all functions and

processes. Regarding computing power, the CPU is the most important

element of a computer system.

The CPU is comprised of three main parts:

 Arithmetic Logic Unit (ALU): Executes all arithmetic and logical

operations. Arithmetic calculations like as addition, subtraction,

multiplication and division. Logical operation like compare

numbers, letters, or special characters

 Control Unit (CU): controls and co-ordinates computer

components.

1. Read the code for the next instruction to be executed.

2. Increment the program counter so it points to the next instruction.

3. Read whatever data the instruction requires from cells in memory.

4. Provide the necessary data to an ALU or register.

6

5. If the instruction requires an ALU or specialized hardware to complete,

instruct the hardware to perform the requested operation.

 Registers: Stores the data that is to be executed next, "very fast

storage area".

RAM:

Random Access Memory (RAM): is a memory scheme within the

computer system responsible for storing data on a temporary basis, so that

it can be promptly accessed by the processor as and when needed. It is

volatile in nature, which means that data will be erased once supply to the

storage device is turned off. RAM stores data randomly and the processor

accesses these data randomly from the RAM storage. RAM is considered

"random access" because you can access any memory cell directly if you

know the row and column that intersect at that cell.

ROM:

Read Only Memory (ROM): is a permanent form of storage. ROM stays

active regardless of whether power supply to it is turned on or off. ROM

devices do not allow data stored on them to be modified.

Input Devices:

Input device is any peripheral (piece of computer hardware equipment to

provide data and control signals to an information processing system such

as a computer or other information appliance.

Input device Translate data from form that humans understand to one that

the computer can work with. Most common are keyboard and mouse.

7

Output devices

An output device is any piece of computer hardware equipment used to

communicate the results of data processing carried out by an information

processing system (such as a computer) which converts the electronically

generated information into human-readable form.

Bus System

 A Bus is a common communications pathway used to carry

information between the various elements of a computer system

 The term BUS refers to a group of wires or conduction tracks on a

printed circuit board (PCB) though which binary information is

transferred from one part of the microcomputer to another

 The individual subsystems of the digital computer are connected

through an interconnecting BUS system.

 There are three main bus groups

 Address Bus

 Data Bus

 Control Bus

Address Bus: The address bus consists of 16, 20, 24, or more parallel

signal lines. On these lines the CPU sends out the address of the memory

location that is to be written to or read from. The number of address lines

determines the number of memory locations that the CPU can address. If

the CPU has N address lines then it can directly address 2N memory

locations.

Data Bus: The data bus consists of 8, 16, 32 or more parallel signal lines.

As indicated by the double-ended arrows on the data bus line, the data bus

lines are bi-directional. This means that the CPU can read data in on these

8

lines from memory or from a port as well as send data out on these lines to

memory location or to a port. Many devices in a system will have their

outputs connected to the data bus, but the outputs of only one device at a

time will be enabled.

Control Bus: The control bus consists of 4-10 parallel signal lines. The

CPU sends out signals on the control bus to enable the outputs of addressed

memory devices or port devices. Typical control bus signals are memory

read, memory write, I/O read, and I/O writer. To read a byte of data from

a memory location, for example, the CPU sends out the address of the

desired byte on the address bus and then sends out a memory read signal

on the control bus.

 Microprocessor 8086

 8086 is the first 16-bit microprocessor from INTEL, released in the year

1978. The term 16 bit means that its ALU, its internal registers and most

of the instructions are designed to work with 16 bit binary words. 8086

microprocessor has a 16-bit data bus and 20-bit address bus. So, it can

address any one of 220 =1048576=1 megabyte memory locations. INTEL

8088 has the same ALU, same registers and same instruction set as the

8086.But the only difference is 8088 has only 8-bit data bus and 20-bit

address bus. Hence the 8088 can only read/write/ports of only 8-bit data at

a time. The 8086 microprocessor can work in two modes of operations

.They are Minimum mode and Maximum mode. In the minimum mode of

operation the microprocessor do not associate with any co-processors and

cannot be used for multiprocessor systems. But in the maximum mode the

8086 can work in multi-processor or co-processor configuration. This

minimum or maximum operations are decided by the pin MN/ MX (Active

9

low). When this pin is high 8086 operates in minimum mode otherwise it

operates in Maximum mode.

8086 Microprocessor features:

1. It is 16-bit microprocessor.

2. It has a 16-bit data bus, so it can read data from or write data to

memory and ports either 16-bit or 8-bit at a time.

3. It has 20 bit address bus and can access up to 220 memory locations

(1 MB).

4. It can support up to 64K I/O ports.

5. It provides 14, 16-bit registers.

6. It has multiplexed address and data bus AD0-AD15 & A16-A19.

7. It requires single phase clock with 33% duty cycle to provide

internal timing.

8. Prefetches up to 6 instruction bytes from memory and queues them

in order to speed up the processing.

9. 8086 supports 2 modes of operation

a. Minimum mode

b. Maximum mode

Architecture of 8086 microprocessor:

To improve the performance by implementing the parallel processing

concept the CPU of the 8086 /8088 is divided into two independent

sections .They are Bus Interface Unit (BIU) and Execution Unit (Eu) as

shown in figure 2.

11

Fig.2: Architecture of 8086 Microprocessor

Bus Interface Unit (BIU):

 It provides a full 16 bit bidirectional data bus and 20 bit address bus.

 The bus interface unit connects the microprocessor to external

devices.

BIU performs following operations:

 Instruction fetching.

 Reading and writing data of data operands for memory.

 Inputting/outputting data for input/output peripherals.

 And other functions related to instruction and data acquisition.

11

 To implement above functions, the BIU contains the segment

registers, the instruction pointer, address generation adder, bus

control logic, and an instruction queue.

 The BIU uses a mechanism known as an instruction stream queue to

implement pipeline architecture.

Execution Unit (EU)

 The Execution unit is responsible for decoding and exe uting all

instructions.

 The EU consists of arithmetic logic unit (ALU), status and control

flags, general‐ purpose registers, and temporary‐ operand registers.

 The EU extracts instructions from the top of the queue in t e BIU,

decodes the ,generates operands if necessary, passes them to the IU

and requests it to perform the read or write by cycles to memory or

I/O and perform the operation specified by the instruction on the

operands.

 During the execution of the instruction, the EU tests the status and

control flags and updates them based on the results of executing the

instruction.

8086 Has Pipelining Architecture:

 While the EU is decoding an instruction or executing an instruction,

which does not require use of the buses, the BIU fetches up to six

instruction bytes for the following instructions.

 The BIU stores these pre-fetched bytes in a first-in-first-out register

set called a queue.

 When the EU is ready for its next instruction from the queue in the

BIU. This is much faster than sending out an address to the system

12

memory and waiting for memory to send back the next instruction

byte or bytes.

 Except in the case of JMP and CALL instructions, where the queue

must be dumped and then reloaded starting from a new address, this

pre-fetch and queue scheme greatly speeds up processing.

 Fetching the next instruction while the current instruction executes

is called pipelining.

Register Organization

The 14 registers of 8086 microprocessor are categorized into four groups.

They are general purpose data registers, Pointer & Index registers, Segment

registers and Flag register as shown in the table below.

S.NO Type Register width Name of the Registers

1 General Purpose

Register(4)

16-bit AX,BX,CX,DX

8-bit AL,AH,BL,BH,CL,CH,DL,DH

2 Pointer Registers 16-bit Stack Pointer (SP)

Base Pointer (BP)

3 Index Registers 16-bit Source Index (SI)

Destination Index (DI)

4 Segment Registers 16-bit Code Segment (CS)

Data Segment (DS)

Stack Segment (SS)

Extra Segment (ES)

5 Instruction 16-bit Instruction Pointer (IP)

6 Flag (PSW) 16-bit Flag Register

13

1. General Purpose Registers:

 Accumulator register: consists of two 8-bit registers AL and AH,

which can be combined together and used as a 16-bit register AX.

AL in this case contains the low order byte of the word, and AH

contains the high order byte. Accumulator can be used for I/O

operations and string manipulation.

 Base register: consists of two 8-bit registers BL and BH, which can

be combined together and used as a 16-bit register BX. BL in this

case contains the low order byte of the word, and BH contains the

high order byte. BX register usually contains a data pointer used for

based, based indexed or register indirect addressing.

 Count register: consists of two 8-bit registers CL and CH, which

can be combined together and used as a 16-bit register CX. CL in

this case contains the low order byte of the word, and CH contains

the high order byte. Count register can be used in Loop, shift/rotate

instructions and as a counter in string manipulation.

 Data register: consists of two 8-bit registers DL and DH, which can

be combined together and used as a 16-bit register DX. DL in this

case contains the low order byte of the word, and DH contains the

high order byte. Data register can be used as a port number in I/O

operations. In integer 32-bit multiply and divide instruction the DX

register contains high order word of the resulting number.

14

2. Index and Pointer Register

These registers can also be called as special purpose registers.

 Source Index (SI): is a 16-bit register. SI is used foe indexed, based

indexed and register indirect addressing. As well as source data

address in string manipulation instructions. Used in conjunction with

DS register to point to data locations in the data segment.

 Destination Index (DI) is a 16-bit register. Used with the ES

register in string operations. DI is used for indexed, based indexed

and register indirect addressing, as well as a destination data address

in string manipulation instructions. In short, Destination Index and

SI Source Index registers are used to hold address.

 Stack Pointer (SP): is a 16-bit register pointing to program stack, it

is used to hold the address of the top of the stack. The stack is

maintained as LIFO with its bottom at the start of the stack segment

(Specified by the SS segment register). Unlike the SP register, the

BP can be used to specify the offset of other program segments.

 Base Pointer (BP): is a 16-bit register pointing to program stack

segment. It is usually used by subroutine to locate variables that were

passed on stack by calling program. BP register is usually used for

based, based indexed or register indirect addressing.

15

3. Segment Registers

Most of the registers contain data/instruction offsets within 64 KB memory

segment. There are four different 64 KB segments for instructions, stack,

data and extra data. To specify where in 1 MB of processor memory these

4 segments are located the processor uses for code segment register.

 Code Segment (CS) is a 16-bit register containing address of 64 KB

segment with processor instructions. The processor uses CS segment

for all accesses to instructions referenced by instruction pointer (IP)

register. CS register cannot be changed directly. The CS register is

automatically updated during far jump, far call and far return

instructions.

 Stack segment (SS) is a 16‐ bit register containing address of 64KB

segment with program stack. By default, the processor assumes that

all data referenced by the stack pointer (SP) and base pointer (BP)

registers is located in the stack segment. SS register can be changed

directly using POP instruction.

 Data segment (DS) is a 16‐ bit register containing address of 64KB

segment with program data. By default, the processor assumes that

all data referenced by general registers (AX, BX, CX, DX) and index

register (SI, DI) is located in the data segment. DS register can be

changed directly using POP and LDS instructions.

16

 Extra segment (ES) used to hold the starting address of Extra

segment. Extra segment is provided for programs that need to access

a second data segment. Segment registers cannot be used in

arithmetic operations.

4. Instruction Pointer (IP) is a 16‐ bit register. This is a crucially

important register which is used to control which instruction the

CPU executes. The Ip, or program counter, is used to store the

memory location of the next instruction to be executed. The CPU

checks the program counter to ascertain which instruction to carry

out next. It then updates the program counter to point to the next

instruction. Thus the program counter will always point to the next

instruction to be executed.

5. Flag Register determines the current state of the processor. They

are modified automatically by CPU after mathematical operations,

this allows to determine the type of the result, and to determine

conditions to transfer control to other parts of the program. 8086 has

9 flags and they are divided into two categories:

1. Status Flags

Status Flags represent result of last arithmetic or logical instruction

executed. Conditional flags are as follows:

 Carry Flag (CF): This flag indicates an overflow condition for

unsigned integer arithmetic. It is also used in multiple‐ precision

arithmetic.

17

 Auxiliary Flag (AF): If an operation performed in ALU generates

a carry/barrow from lower nibble (i.e. D0 D3) to upper nibble (i.e.

D4 – D7), the AF flag is set i.e. carry given by D3 bit to D4 is AF

flag. This is not a general‐ purpose flag, it is used internally by the

processor to perform Binary to BCD conversion.

 Parity Flag (PF): This flag is used to indicate the parity of result.

If lower order 8‐ bits of the result contains even number of 1‟s, the

Parity Flag is set and for odd number of 1‟s, the Parity Flag is reset.

 Zero Flag (ZF): It is set; if the result of arithmetic or logical

operation is zero else it is reset.

 Sign Flag (SF): In sign magnitude format the sign of number is

indicated by MSB bit. If the result of operation is negative, sign flag

is set.

 Overflow Flag (OF): It occurs when signed numbers are added or

subtracted. An OF indicates that the result has exceeded the

capacity of machine.

18

2. Control Flags

Control flags are set or reset deliberately to control the operations of the

execution unit. Control flags are as follows:

 Trap Flag (TP):

 It is used for single step control.

 It allows user to execute one instruction of a program at a time for

debugging.

 When trap flag is set, program can be run in single step mode.

 Interrupt Flag (IF):

 It is an interrupt enable/disable flag.

 If it is set, the maskable interrupt of 8086 is enabled and if it is reset,

the interrupt is disabled.

 It can be set by executing instruction sit and can be cleared by

executing CLI instruction.

 Direction Flag (DF):

 It is used in string operation.

 If it is set, string bytes are accessed from higher memory address to

lower memory address.

 When it is reset, the string bytes are accessed from lower memory

address to higher memory address.

19

Memory Segmentation:

 The memory in an 8086 based system is organized as segmented

memory.

 The CPU 8086 is able to access 1MB of physical memory. The

complete 1MB of memory can be divided into 16 segments, each of

64KB size and is addressed by one of the segment register.

 The 16-bit contents of the segment register actually point to the

starting location of a particular segment. The address of the

segments may be assigned as 0000H to F000h respectively.

 To address a specific memory location within a segment, we need

an offset address. The offset address values are from 0000H to

FFFFH so that the physical addresses range from 00000H to

FFFFFH.

 A program can have more than four segments, but can only access

four segments at a time.

Fig. 3: Memory Segmentation

21

Physical address is calculated as below:

Ex:

Segment address =1005H

Offset address =5555H

Segment address =1005H = 0001 0000 0000 0101

Shifted left by 4 Positions=0001 0000 0000 0101 0000 + Offset address =

5555H= 0101 0101 0101 0101

Physical address=155A5H =0001 0101 0101 1010 0101

Physical address = Segment address * 10H + Offset address.

Fig. 4: Generating a physical address

The main advantages of the segmented memory scheme are

as follows:

1. Allows the memory capacity to be 1MB although the actual

addresses to be handled are of 16-bit size.

2. Allows the placing of code, data and stack portions of the same

program in different parts (segments) of memory, for data and code

protection.

21

3. Permits a program and/or its data to be put into different areas of

memory each time the program is executed, i.e., provision for

relocation is done.

Addressing modes:

The different ways in which a source operand is denoted in an instruction

are known as the addressing modes. There are 8 different addressing modes

in 8086 programming. They are

1. Immediate addressing mode

2. Register addressing mode

3. Direct addressing mode

4. Register indirect addressing mode

5. Based addressing mode

6. Indexed addressing mode.

7. Based indexed addressing mode

8. Based, Indexed with displacement.

1. Immediate addressing mode: In this type of addressing, immediate

data is a part of instruction and appears in the form of successive

byte or bytes.

Example:

MOV AX, 0005H

In the above example, 0005H is the immediate data. The immediate data

may be 8-bit or 16-bit in size.

2. Register addressing mode: In register addressing mode, the data is

stored in a register and is referred using the particular register. All

the registers, except IP, may be used in this mode.

22

Example:

 MOV BX, AX

3. Direct addressing mode: In the direct addressing mode a 16-bit

memory address (offset) is directly specified in the instruction as a

part of it.

Example:

MOV AX, [5000H]

Here, data resides in a memory location in the data segment, whose

effective address may be completed using 5000H as the offset address and

content of DS as segment address. The effective address here, is 10H * DS

+ 5000H.

4. Register indirect addressing mode: Sometimes, the address of the

memory location, which contains data or operand, is determined in

an indirect way, using the offset register. This mode of addressing is

known as register indirect mode. In this addressing mode, the offset

address of data is in either BX or SI or DI register. The default

segment is either DS or ES. The data is supposed to be available at

the address pointed to by the content of any of the above registers in

the default data segment.

Example:

MOV AX, [BX]

Here, data is present in a memory location in DS whose offset address is in

BX. The effective address of the data is given as 10H * DS + [BX].

5. Based addressing mode: In the based addressing mode, the

effective address of the operand is obtained by adding a direct or

23

indirect displacement to the contents of either base register BX or

base pointer register BP.

Example:

MOV [BX] + 1234H, AL;

EA=BX+1234H

PH=DS*10+EA

6. Indexed Addressing mode: In the Indexed addressing mode, the

effective address of the operand is obtained by adding a direct or

indirect displacement to the contents of either SI or DI register.

Example:

MOV BX, [SI+06];

EA=SI+06

PH=DS*10+EA

7. Based -index addressing mode: The effective address of data is

formed, in this addressing mode, by adding content of a base register

(any one of BX or BP) to the content of an index register (any one

of SI or DI). The default segment register may be ES or DS.

Example:

MOV AX, [BX][SI]

Here, BX is the base register and SI is the index register the effective

address is computed as 10H * DS + [BX] + [SI].

8. Based indexed with displacement mode: The effective address is

formed by adding an 8 or 16-bit displacement with the sum of the

24

contents of any one of the base register (BX or BP) and any one of

the index register, in a default segment.

Example:

 MOV AX, 50H [BX] [SI]

Here, 50H is an immediate displacement, BX is base register and SI is an

index register the effective address of data is computed as

10H * DS + [BX] + [SI] + 50H

25

Instruction Set of 8086

The 8086 microprocessor supports 6 types of Instructions. They are

1. Data Transfer Instructions

The Data Transfer Instructions are those, which transfers the DATA from

any one source to any one destination. The data’s may be of any type. They

are again classified into four groups as table 1:

Table 1: Data Transfer Instructions

 MOV instruction

It is a general purpose instruction to transfer byte or word from register to

register, memory to register, register to memory or with immediate

addressing.

26

General Form:

MOV destination, source

MOV BX, 00F2H ; load the immediate number 00F2H in BX register

MOV CL, [2000H] ; Copy the 8 bit content of the memory location, at

a displacement of 2000H from data segment base

to the CL register

MOV [589H], BX; Copy the 16 bit content of BX register on to the

memory location, which at a displacement of

589H from the data segment base.

MOV DS, CX ; Move the content of CX to DS

 XCHG instruction

The XCHG instruction exchanges contents of the destination and source.

Here destination and source can be register and register or register and

memory location, but XCHG cannot interchange the value of 2 memory

locations.

General Format

XCHG Destination, Source

XCHG BX, CX; exchange word in CX with the word in BX

XCHG AL, CL; exchange byte in CL with the byte in AL

XCHG AX, SUM[BX]; here physical address, which is

DS+SUM+[BX]. The content at physical

address and the content of AX are

interchanged.

27

 LEA Instruction – Load Effective Address

General Form

LEA register, memory

This instruction indicates the offset of the variable or memory location

named as source and put this offset in indicated 16-bit register.

Example:

LEA BX,m ; Load BX with offset of m in DS

LEA BP,SS:STAK ; Load BP with offset of Stack in SS

LEA CX, [BX][DI] ; Load CX with EA=BX+DI

 PUSH instruction

The PUSH instruction decrements the stack pointer by two and copies the

word from source to the location where stack pointer now points. Here the

source must of word size data. Source can be a general purpose register,

segment register or a memory location.

The PUSH instruction first pushes the most significant byte to sp-1, then

the least significant to the sp-2. Push instruction does not affect any flags.

28

Example:

PUSH CX; Decrements SP by 2, copy content of CX to the stack

PUSH DS; Decrement SP by 2 and copy DS to stack

 POP instruction

The POP instruction copies a word from the stack location pointed by the

stack pointer to the destination. The destination can be a General purpose

register, a segment register or a memory location. Here after the content is

copied the stack pointer is automatically incremented by two.

The execution pattern is similar to that of the PUSH instruction.

Example:

POP CX ; Copy a word from the top of the stack to CX and increment

SP by 2.

 IN & OUT instructions

The IN instruction will copy data from a port to the accumulator. If 8 bit is

read the data will go to AL and if 16 bit then to AX. Similarly OUT

instruction is used to copy data from accumulator to an output port.

Both IN and OUT instructions can be done using direct and indirect

addressing modes.

29

Example

IN AL, 0F8H; Copy a byte from the port 0F8H to AL

MOV DX, 30F8H; Copy port address in DX

IN AL, DX; Move 8 bit data from 30F8H port

IN AX, DX; Move 16 bit data from 30F8H port

OUT 047H, AL; Copy contents of AL to 8 bit port 047H

MOV DX, 30F8H; Copy port address in DX

OUT DX, AL; Move 8 bit data to the 30F8H port

OUT DX, AX; Move 16 bit data to the 30F8H port

2. Arithmetic Instructions

These instructions are those which are useful to perform Arithmetic

calculations, such as addition, subtraction, multiplication and division.

They are again classified into four groups. They are:

Table 2: Arithmetic Instructions

31

 ADD instruction

Add instruction is used to add the current contents of destination with that

of source and store the result in destination. Here we can use register and/or

memory locations. AF, CF, OF, PF, SF, and ZF flags are affected

General Format:

ADD Destination, Source

Example"

ADD AL, 0FH; Add the immediate content, 0FH to the

content of AL and store the result in AL

ADD AX, BX; AX = AX+BX

ADD AX, 0100H; Immediate

ADD AX, BX; Register

ADD AX,[SI]; Register Indirect or Indexed

ADD AX, [5000H]; Direct

ADD [5000H], 0100H; Immediate

ADD 0100H; Destination AX (IMPLICT)

 ADC: ADD with Carry

This instruction performs the same operation as ADD instruction, but adds

the carry flag bit (which may be set as a result of the previous calculation)

to the result. All the condition code flags are affected by this instruction.

The examples of this instruction along with the modes are as follows:

31

Example:

ADC AX,BX; Register

ADC AX,[SI]; Register Indirect or Indexed

ADC AX, [5000H]; Direct

ADC [5000H], 0100H; Immediate

ADC 0100H; Immediate AX (IMPLICT)

 SUB instruction

SUB instruction is used to subtract the current contents of destination with

that of source and store the result in destination. Here we can use register

and/or memory locations. AF, CF, OF, PF, SF, and ZF flags are affected

General Format:

SUB Destination, Source

Example:

SUB AL, 0FH ; subtract the immediate content, 0FH from the

content of AL and store the result in AL

SUB AX, BX ; AX = AX-BX

SUB AX,0100H ; Immediate Destination AX

SUB AX,BX; Register

SUB AX,[5000H]; Direct

SUB [5000H], 0100H; Immediate

32

 SBB: SUBTRACT with Borrow

The subtract with borrow instruction subtracts the source operand and the

borrow flag (CF) which may reflect the result of the previous calculations,

from the destination operand. Subtraction with borrow, here means

subtracting 1 from the subtraction obtained by SUB, if carry (borrow) flag

is set.

The result is stored in the destination operand. All the flags are affected

(condition code) by this instruction. The examples of this instruction are as

follows:

Example:

SBB AX, 0100H ; Immediate Destination AX

SBB AX, BX ; Register

SBB AX,[5000H] ; Direct

SBB [5000H], 0100H ; Immediate

 CMP: Compare

The instruction compares the source operand, which may be a register or

an immediate data or a memory location, with a destination operand that

may be a register or a memory location. For comparison, it subtracts the

source operand from the destination operand but does not store the result

anywhere. The flags are affected depending upon the result of the

subtraction. If both of the operands are equal, zero flag is set. If the source

operand is greater than the destination operand, carry flag is set or else,

carry flag is reset. The examples of this instruction are as follows:

33

Example:

CMP BX,0100H ; Immediate

CMP AX,0100H ; Immediate

CMP [5000H] ; Direct

CMP BX,[SI] ; Register Indirect or Indexed

CMP BX, CX ; Register

 INC & DEC instructions

INC and DEC instructions are used to increment and decrement the content

of the specified destination by one. AF, CF, OF, PF, SF, and ZF flags are

affected.

Example:

INC AL; AL= AL + 1

INC AX; AX=AX + 1

DEC AL; AL= AL – 1

DEC AX; AX=AX – 1

• MUL Instruction - Multiply unsigned bytes or words

General Format

 MUL OP

This instruction multiplies an unsigned multiplication of the accumulator

by the operand specified by op. The type of op may be a register or memory

operand,

When operand is a byte:

AX = AL * operand.

34

When operand is a word:

(DX AX) = AX * operand.

Example:

MUL BL; AX=AL*CL

MUL CX; (DX) (AX) = (AX)*(CX)

MUL [BX]; (AX) = (AL)*(DS) 0+ (BX))

 IMUL Instruction - Multiply signed number

General Format

IMUL op

This instruction performs a signed multiplication.

When operand is a byte:

AX = AL * operand.

When operand is a word: (DX AX) = AX * operand.

Example:

IMUL BH; Signed byte in AL times multiplied by

; signed byte in BH and result in AX.

35

 DIV Instruction - Unsigned divide

General Format

Div op ; op (register or memory)

When operand is a byte:

AL=AX/operand

AH=remainder (modulus)

When operand is a word:

AX= (DX AX)/operand

DX=remainder (modulus)

If an attempt is made to divide by zero or quotient is too large to fit in AX

(greater than FFFFH) the 8086 will do a type of 0 interrupt.

If you want to divide a byte by a byte, you must first put the dividend byte

in AL and fill AH with all 0's. The SUB AH, AH instruction is a quick

way to do. If you want to divide a word by a word, put the dividend word

in AX and fill DX with all O's, The SUB DX, DX instruction does this

quickly.

Example:

DIV CX ; (Quotient) AX= (DX: AX)/CX

;(Reminder) DX= (DX: AX) % CX

; AX = 37D7H = 14, 295 decimal and BH =97H = 151 decimal

DIV BH ; AX/ BH

; AX = Quotient = 5EH = 94 decimal and AH = Remainder = 65H = 101;

decimal.

36

 IDIV Instruction - Divide by signed byte or word

General Format

IDIV op ; op (reg or memory)

This instruction is used to divide a signed word by a signed byte or to divide

a signed double word by a signed word.

WHEN operand is a byte:

AL=AX/operand

AH=remainder (modulus)

When operand is a word:

AX= (DX AX)/operand

DX=remainder (modulus)

Example:

MOV AX,-203; AX=0FF35h

MOV BL, 4;

IDIV BL; AL=-50(0CEh), AH=-3(0FDH)

RET

37

3. BIT Manipulation Instructions:

These instructions are used to perform Bit wise operations.

Table 3: BIT Manipulation Instructions

 AND instruction

This instruction logically ANDs each bit of the source byte/word with the

corresponding bit in the destination and stores the result in destination. The

source can be an immediate number, register or memory location, register

can be a register or memory location.

The CF and OF flags are both made zero, PF, ZF, SF are affected by the

operation and AF is undefined.

General Format:

AND Destination, Source

Example

AND BH, CL ; AND byte in CL with byte in BH ;result in bH

AND BX,OOFFh ; AND word in BX with immediate OOFFH. Mask

upper byte, leave lower unchanged

AND CX, [SI] ; AND word at offset [SI] in data segment with word

in CX register. Result in CX register

38

 OR Instruction

This instruction logically ORs each bit of the source byte/word with the

corresponding bit in the destination and stores the result in destination. The

source can be an immediate number, register or memory location, register

can be a register or memory location.

The CF and OF flags are both made zero, PF, ZF, SF are affected by the

operation and AF is undefined.

General Format:

OR Destination, Source

OR AH,CL ; CL is OR'ed with AH, result in AH;

CX=00111110 10100101

OR CX,FF00h ; OR CX with immediate FF00h result in

CX=11111111 10100101 upper byte are all 1's

lower bytes are unchanged.

 XOR Instruction

The XOR operation is again carried out in a similar way to the AND and

OR operation. The constraints on the operands are also similar. The XOR

operation gives a high output, when the 2 input bits are dissimilar.

Otherwise, the output is zero. The example instructions are as follows:

XOR AX,0098H;

XOR AX,BX;

XOR AX,[5000H];

39

 Shift / Rotate Instructions

Shift instructions move the binary data to the left or right by shifting them

within the register or memory location. They also can perform

multiplication of powers of

2+n and division of powers of 2-n .

There are two type of shifts logical shifting and arithmetic shifting, later is

used with signed numbers while former with unsigned.

Fig. 5: Shift operations

Rotate on the other hand rotates the information in a register or memory

either from one end to another or through the carry flag.

41

Fig. 6: Rotate operations.

 SHL/SAL instruction.

Both the instruction shifts each bit to left, and places the MSB in CF and

LSB is made 0. The destination can be of byte size or of word size, also it

can be a register or a memory location. Number of shifts is indicated by

the count.

All flags are affected.

General Format:

SAL/SHL destination, count

41

Example:

MOV BL,

B7H ;

BL is made

B7H

SAL BL, 1 ;

shift the content of BL register one place to

left. Before

execution,

CY B7 B6 B5 B4 B3 B2 B1 B0

0 1 0 1 1 0 1 1 1

After the execution,

CY B7 B6 B5 B4 B3 B2 B1

B

0

1 0 1 1 0 1 1 1 0

 SHR instruction

This instruction shifts each bit in the specified destination to the right and

0 is stored in the MSB position. The LSB is shifted into the carry flag. The

destination can be of byte size or of word size, also it can be a register or a

memory location. Number of shifts is indicated by the count.

All flags are affected.

General Format:

SHR destination, count

42

Example:

MOV BL, B7H ; BL is made B7H

SHR BL, 1 ; shift the content of BL register one place to the right.

 ROL instruction

This instruction rotates all the bits in a specified byte or word to the left

some number of bit positions. MSB is placed as a new LSB and a new CF.

The destination can be of byte size or of word size, also it can be a register

or a memory location. Number of shifts is indicated by the count.

All flags are affected

General Format:

ROL destination, count

MOV BL, B7H ;

BL is made

B7H

ROL BL, 1

; rotates the content of BL register one place to

the left.

Before execution,

CY B7 B6 B5 B4 B3 B2 B1 B0

0 1 0 1 1 0 1 1 1

43

After the execution,

CY

B7 B6 B5 B4 B3 B2 B1 B0

1 0 1 1 0 1 1 1 1

 ROR instruction

This instruction rotates all the bits in a specified byte or word to the right

some number of bit positions. LSB is placed as a new MSB and a new CF.

The destination can be of byte size or of word size, also it can be a register

or a memory location. Number of shifts is indicated by the count.

All flags are affected.

General Format:

ROR destination, count

Example:

MOV BL, B7H ; BL is made B7H

ROR BL, 1 ; shift the content of BL register one place to the right.

 RCR instruction

This instruction rotates all the bits in a specified byte or word to the right

some number of bit positions along with the carry flag. LSB is placed in a

new CF and previous carry is placed in the new MSB. The destination can

be of byte size or of word size, also it can be a register or a memory

location. Number of shifts is indicated by the count.

All flags are affected

General Format:

44

RCR destination, count

Example:

MOV BL, B7H ; BL is made B7H

RCR BL, 1 ; shift the content of BL register one place to the right.

4. String Instructions

The string instructions function easily on blocks of memory. They are user

friendly instructions, which help for easy program writing and execution.

They can speed up the manipulating code. They are useful in array

handling, tables and records. By using these string instructions, the size of

the program is considerably reduced.

Five basic String Instructions define operations on one element of a string:

 Move byte or word string MOVSB/MOVSW

 Compare string CMPSB/CMPSW

 Scan string SCASB/SCASW

 Load string LODSB/LODSW

 Store string STOSB/STOSW

The general forms of these instructions are as shown below:

45

Table 4: string instructions

 MOVS/MOVSB/MOVSW

These instructions copy a word or byte from a location in the data segment

to a location in the extra segment. The offset of the source is in SI and that

of destination is in DI. For multiple word/byte transfers the count is stored

in the CX register.

When direction flag is 0, SI and DI are incremented and when it is 1, SI

and DI are decremented.

MOVS affect no flags. MOVSB is used for byte sized movements while

MOVSW is for word sized.

46

MOVSB

 Copy byte at DS:[SI] to ES:[DI]. Update SI and DI.

Algorithm:

 ES :[DI] = DS : [SI]

 if DF = 0 then

 SI = SI + 1

 DI = DI + 1

Else

 SI = SI - 1

 DI = DI-1

Example:

ORG 100h

CLD

LEA SI , a1

LEA DI , a2

MOV CX , 5

REP MOVSB

RET

a1 DB 1 , 2 , 3 , 4 , 5

a2 DB 5 DUP (0)

MOVSW

Copy word at DS:[SI] to ES:[DI]. Update SI and DI.

Algorithm:

 ES :[DI] = DS : [SI]

 if DF = 0 then O SI = SI + 2 O DI = DI + 2

Else

 SI = SI – 2

 DI = DI – 2

47

Example:

ORG 100h CLD

LEA SI , a1

LEA DI , a2

MOV CX , 5

REP MOVSW

RET

a1 DW 1 , 2 , 3 , 4 , 5

a2 DW 5 DUP(0)

 REP/REPE/REP2/REPNE/REPNZ

REP is used with string instruction; it repeats an instruction until the

specified condition becomes false.

Example:

REP REPE/REPZ

 CX=0

 CX=0 OR ZF=0

 REPNE/REPNZ CX=0 OR ZF=1

 LODS/LODSB/LODSW

This instruction copies a byte from a string location pointed to by SI to AL

or a word from a string location pointed to by SI to AX.LODS does not

affect any flags. LODSB copies byte and LODSW copies word.

48

LODSB

Load byte at DS:[SI] into AL. Update SI.

 Algorithm:

 AL = DS : [SI]

 if DF = 0 then

 SI = SI + 1

Else

 SI = SI – 1

Example:

ORG 100h

LEA SI , a1

MOV CX , 5

MOV AH , 0Eh

m : LODSB

INT 10h

LOOP m

RET

a1 DB ' H ' , ' e ' , ' l ' , ' l ' , ' o '

LODSW

Load word at DS:[SI] into AX. Update SI. Algorithm:

AX = DS : [SI]

 if DF = 0 then

 SI = SI + 2

else

 SI = SI - 2

49

Example:

ORG 100h

LEA SI , a1

MOV CX , 5

REP LODSW ; finally there will be 555h in AX .

RET

a1 dw 111h , 222h , 333h , 444h , 555h

 STOS/STOSB/STOSW

The STOS instruction is used to store a byte/word contained in AL/AX to

the offset contained in the DI register. STOS does not affect any flags.

After copying the content DI is automatically incremented or decremented,

based on the value of direction flag.

STOSB

Store byte in AL into ES:[DI]. Update DI.

Algorithm:

 ES :[DI] = AL

 if DF = 0 then

 DI = DI + 1

Else

 DI = DI - 1

Example:

ORG 100h

LEA DI , a1

MOV AL , 12h

51

MOV CX , 5

REP STOSB

RET

a1 DB 5 dup(0)

STOSW

Store word in AX into ES:[DI]. Update DI.

Algorithm:

 ES :[DI] = AX

 if DF = 0 then

 DI = DI + 2

Else

 DI = DI - 2

Example:

ORG 100h

LEA DI , a1

MOV AX , 1234h

MOV CX , 5

REP STOSW

RET

a1 DW 5 dup(0)

51

 CMPS/CMPSB/CMPSW

CMPS is used to compare the strings, byte wise or word wise. The

comparison is affected by subtraction of content pointed by DI from that

pointed by SI. The AF, CF, OF, PF, SF and ZF flags are affected by this

instruction, but neither operand is affected.

CMPSB

Compare bytes: ES:[DI] from DS:[SI].

Algorithm:

 DS :[SI] - ES : [DI]

 set flags according to result : OF , SF , ZF , AF , PF , CF

 if DF = 0 then

 SI = SI + 1

 DI = DI + 1

 Else

 SI = SI - 1

 DI = DI - 1

CMPSW

 DS :[SI] - ES : [DI]

 set flags according to result : OF , SF , ZF , AF , PF , CF

 if DF = 0 then

 SI = SI + 2

 DI = DI + 2

 Else

 SI = SI - 2

 DI = DI – 2

52

• Scan string SCASB/SCASW

SCASB

Compare bytes: AL from ES:[DI].

 Algorithm:

 AL - ES : [DI]

 set flags according to result : OF , SF , ZF , AF , PF , CF

 if DF = 0 then

 DI = DI + 1

Else

 DI = DI – 1

SCASW

Compare bytes: AX from ES:[DI].

 Algorithm:

 AL - ES : [DI]

 set flags according to result : OF , SF , ZF , AF , PF , CF

 if DF = 0 then

 DI = DI + 2

Else

 DI = DI – 2

53

5. Control Transfer Instructions

These instructions transfer the program control from one address to other

address. (Not in a sequence). They are again classified into four groups.

They are:

Table 5: Control Transfer Instructions

 JUMP Instruction

The purpose of a jump instruction is to alter the execution path of

instructions in the program. The code segment register and instruction

pointer keep track of the next instruction to be executed. Thus a jump

instruction involves altering the contents of these registers. In this way,

execution continues at an address other than that of the next sequential

instruction. That is, a jump occurs to another part of the program.

There two type of jump instructions:

a) Unconditional jump.

b) Conditional jump.

54

In an unconditional jump, no status requirements are imposed for the jump

to occur. That is, as the instruction is executed, the jump always takes place

to change the execution sequence.

Instruction Meaning Format Operation Flags affected

JMP Unconditional

jump

JMP

operand

Jump is to the

address specified

by operand

non

On the other hand, for a conditional jump instruction, status conditions that

exist at the moment the jump instruction is executed decide whether or not

the jump will occur. If this condition or conditions are met, the jump takes

place, otherwise execution continues with the next sequential instruction

of the program. The conditions that can be referenced by a conditional

jump instruction are status flags such as carry (CF), parity (PF), and

overflow (OF).

Instruction Meaning Format Operation Flags affected

JCC Conditional

jump

JCC

operand

if the specific condition

cc is true, the jump to the

address specified by the

operand is initiated,

otherwise the next

instruction is executed

non

55

6. Process Control Instructions

These instructions are used to change the process of the Microprocessor.

They change the process with the stored information. They are again

classified into two groups. They are:

1. Flag Control Instructions

2. External Hardware Synchronization Instructions

1. Flag Control Instructions:

These instructions directly affected the state of flags. Figure below shows

these instructions.

Table 6: Flag Control Instructions

56

2. Flag manipulation instructions

1. STC instruction

This instruction sets the carry flag. It does not affect any other flag.

2. CLC instruction

This instruction resets the carry flag to zero. CLC does not affect any other

flag.

3. CMC instruction

This instruction complements the carry flag. CMC does not affect any other

flag.

4. STD instruction

This instruction is used to set the direction flag to one so that SI and/or DI

can be decremented automatically after execution of string instruction.

STD does not affect any other flag.

5. CLD instruction

This instruction is used to reset the direction flag to zero so that SI and/or

DI can be incremented automatically after execution of string instruction.

CLD does not affect any other flag.

6. STI instruction

This instruction sets the interrupt flag to 1. This enables INTR interrupt of

the 8086. STI does not affect any other flag.

7. CLI instruction

This instruction resets the interrupt flag to 0. Due to this the 8086 will not

respond to an interrupt signal on its INTR input. CLI does not affect any

other flag.

57

2. External Hardware Synchronization Instructions:

Table: External Hardware Synchronization Instructions

58

Interrupts:

An interrupt is a condition that halts the microprocessor temporarily to

work on a different task and then return to its previous task. Interrupt is an

event or signal that request to attention of CPU. This halt allows peripheral

devices to access the microprocessor.

Whenever an interrupt occurs the processor completes the execution of the

current instruction and starts the execution of an Interrupt Service Routine

(ISR) or Interrupt Handler. ISR is a program that tells the processor what

to do when the interrupt occurs. After the execution of ISR, control returns

back to the main routine where it was interrupted.

Broadly the interrupts are divided into two types. They are external

(hardware) Interrupts and internal (Software) Interrupts. The hardware

interrupts are classified as non-maskable and maskable interrupts. The

hardware interrupt is caused by any peripheral device by sending a signal

through a specified pin to the microprocessor. Whereas internal interrupts

are initiated by the state of the CPU (e.g. divide by zero error) or by an

instruction. So, the software interrupt is one which interrupts the normal

59

execution of a program of the microprocessor. The 8086 has two hardware

interrupt pins namely NMI and INTR. In the two, the NMI is a non-

maskable interrupt and the INTR interrupt request is a maskable interrupt

which has lower priority .The third pin associated with the hardware

interrupts are the INTA called interrupt acknowledge.

Hardware interrupts

The interrupts initiated by external hardware by sending an appropriate

signal to the interrupt pin of the processor is called hardware interrupt. The

8086 processor has two interrupt pins INTR and NMI. The interrupts

initiated by applying appropriate signal to these pins are called hardware

interrupts of 8086.

61

Maskable and Non-Maskable Interrupts

 The processor has the facility for accepting or rejecting hardware

interrupts. Programming the processor to reject an interrupt is

referred to as masking or disabling and programming the processor

to accept an interrupt is referred to as unmasking or enabling. In

8086 the interrupt flag (IF) can be set to one to unmask or enable all

hardware interrupts and IF is cleared to zero to mask or disable a

hardware interrupts except NMI. The interrupts whose request can

be either accepted or rejected by the processor are called maskable

interrupts.

 The interrupts whose request has to be definitely accepted (or cannot

be rejected) by the processor are called non-maskable interrupts.

Whenever a request is made by non-maskable interrupt, the

processor has to definitely accept that request and service that

interrupt by suspending its current program and executing an ISR.

In 8086 processor all the hardware interrupts initiated through INTR

pin are maskable by clearing interrupt flag (IF). The interrupt

61

initiated through NMI pin and all software interrupts are non-

maskable.

 The programmer cannot control when a Non-Maskable Interrupts is

serviced and the processor has to stop the main program to execute

the NMI service routine.

 In Maskable Interrupts the programmer can choose to mask specific

interrupts and re-enable them later.

 Non-Maskable Interrupts used :

1. during power failure

2. during critical response time

3. during non-recoverable hardware errors

4. watchdog interrupt

5. during memory parity errors

Software interrupts

Coming to the software interrupts, 8086 can generate 256 interrupt types

through the instruction INT n .Any of the 256 interrupt types can be

generated by specifying the interrupt type after INT instruction. For

example the first five types are as follows:

 TYPE 0 interrupt represents division by zero situation.

 TYPE 1 interrupt represents single-step execution during the

debugging of a program.

 TYPE 2 interrupt represents non-maskable NMI interrupt.

 TYPE 3 interrupt represents break-point interrupt.

 TYPE 4 interrupt represents overflow interrupt.

The interrupts from Type 5 to Type 31 are reserved for other advanced

microprocessors, and interrupts from 32 to Type 255 are available for

hardware and software interrupts.

62

Interrupt vector table

Interrupt vector table on 8086 is a vector that consists of 256 total interrupts

placed at first 1 kb of memory from 0000h to 03ffh, where each vector

consists of segment and offset as a lookup or jump table to memory address

of bios interrupt service routine (f000h to ffffh) or dos interrupt service

routine address, the call to interrupt service routine is similar to far

procedure call.

The size for each interrupt vector is 4 bytes (2 word in 16 bit), where 2

bytes (1 word) for segment and 2 bytes for offset of interrupt service

routine address. So it takes 1024 bytes (1 kb) memory for interrupt vector

table.

63

In 8086 microprocessor following tasks are performed when

microprocessor encounters an interrupt:

1. The value of flag register is pushed into the stack. It means that first

the value of SP (Stack Pointer) is decremented by 2 then the value

of flag register is pushed to the memory address of stack segment .

2. The value of starting memory address of CS (Code Segment) is

pushed into the stack .

3. The value of IP (Instruction Pointer) is pushed into the stack .

4. IP is loaded from word location (Interrupt type) * 04 .

5. CS is loaded from the next word location .

6. Interrupt and Trap flag are reset to 0.

